Morphogenetic Robotics: An Emerging New Field in Developmental Robotics

Yaochu Jin, Senior Member, IEEE, and Yan Meng, Member, IEEE

Abstract—Developmental robotics is also known as epigenetic robotics. We propose in this paper that there is one substantial difference between developmental robotics and epigenetic robotics, since epigenetic robotics concentrates primarily on modeling the development of cognitive elements of living systems in robotic systems, such as language, emotion, and social skills, while developmental robotics should also cover the modeling of neural and morphological development in single- and multirobot systems. With the recent rapid advances in evolutionary developmental biology and systems biology, increasing genetic and cellular principles underlying biological morphogenesis have been revealed. These principles are helpful not only in understanding biological development, but also in designing self-organizing, self-reconfigurable, and self-repairable engineered systems. In this paper, we propose morphogenetic robotics, an emerging new field in developmental robotics, is an important part of developmental robotics in addition to epigenetic robotics. By morphogenetic robotics, we mean a class of methodologies in robotics for designing self-organizing, self-reconfigurable, and self-repairable single- or multirobot systems, using genetic and cellular mechanisms governing biological morphogenesis. We categorize these methodologies into three areas, namely, morphogenetic swarm robotic systems, morphogenetic modular robots, and morphogenetic body and brain design for robots. Examples are provided for each of the three areas to illustrate the main ideas underlying the morphogenetic approaches to robotics.

Index Terms—Developmental robotics, epigenetic robotics, evolutionary developmental robotics, morphogenesis, morphogenetic robotics.

I. WHAT IS AND WHY MORPHOGENETIC ROBOTICS?

Developmental robotics is an interdisciplinary field of robotics that employs simulated or physical robots to understand natural intelligence on the one hand, and to design better robotic systems using principles in biological development, on the other hand [57]. The term developmental robotics is often used interchangeably with other two terms, namely, epigenetic robotics [64] and ontogenetic robotics, which focuses on modeling the postnatal development of cognitive behaviors in living systems, such as language, emotion, anticipation, and social skills. Note, however, that the meaning of epigenetic is not unambiguous in biology. It can either be derived from epigenesis that describes morphogenesis and postnatal development of organisms, or from epigenetics referring to the changes in gene expression that are not caused by genetic changes. Although the difference between developmental robotics and epigenetic robotics has been noticed and topics that are far beyond cognitive development have been discussed [57], researchers have so far refrained from stressing the difference between developmental robotics and epigenetic robotics. Nevertheless, other terminologies such as developmental cognitive robotics [50] and autonomous mental development [95] have also been suggested to refer to the research efforts on modeling cognitive development, which we believe may be seen as attempts to clarify the confusion caused by treating epigenetic robotics equivalent to developmental robotics.

The physical development of animals includes the processes that cause the creation of both the body plan and nervous system, including cleavage, gastrulation, neurulation, organogenesis [96]. Some living organisms, such as amphibians, also undergo a biological process known as metamorphosis, during which both the shape and size of the organisms change [9]. The past decade has witnessed rapid technical and theoretical advances in evolutionary developmental biology [28] (often known as evo-devo) and systems biology in understanding molecular and cellular mechanisms that control the biological morphogenesis. These advances have not only helped us in understanding biological processes such as human deceases, but also provided us new powerful tools for designing engineered systems. For example, increasing evidence has been revealed that biological morphogenesis can be regarded as a self-organizing and self-assembling process through cellular and molecular interactions under the genetic and environmental control [6], [86]. In addition, biological morphogenesis has also shown a surprising degree of robustness [7]. Due to the attractive properties that biological morphogenesis exhibits, much attention has been paid to employing genetic and cellular mechanisms for designing robotic systems, in particular for self-organizing swarm robotic systems and self-reconfigurable modular robots. In addition, a large body of research has been performed in artificial life and robotics to design the body plan and neural controller of robots, using an evolutionary developmental approach [87], [89], [92].

In this paper, we propose that it is high time that the difference between developmental robotics and epigenetic robotics be stressed. To this end, we suggest that a new term, namely, morphogenetic robotics, be used to denote research efforts dedicated to the application of morphogenetic mechanisms to robotics.
which belongs to developmental robotics. From our perspective, morphogenetic robotics may include, but is not limited to
the following three main topics:

1) Morphogenetic swarm robotic systems that deal with the
self-organization of swarm robots using genetic and cellular mechanisms underlying the biological early morphogenesis [32], [58], [84].

2) Morphogenetic modular robots where modular robots
adapt their configurations autonomously based on the current environmental conditions using morphogenetic principles [62], [63].

3) Developmental approaches to the design of the body or body parts, including sensors and actuators, and/or, design of the neural network-based controller of robots [35], [52]. Note that in epigenetic robotics, autonomous mental development can be seen as an incremental, on-line, and open-ended autonomous learning process situated in physical and social environments. The first neural structure, as well as a basic intrinsic motivation system, which enables robots to learn autonomously, is genetically hard wired as a result of neural morphogenesis (neurogenesis).

We believe that developmental robotics should include both morphogenetic robotics and epigenetic robotics. The former is mainly concerned with the physical development of the body and neural control, whereas the latter focuses on the cognitive and mental development. The body morphology, as well as the neural structure of the robots is a result of morpho-
genetic development, on which mental development is based through interaction with the environment. The relationship between morphogenetic robotics, epigenetic robotics, and developmental robotics is summarized in Fig. 1.

Other closely related terms are evolutionary robotics [79] and morphological computation (also known as morphological robotics) [73]. Traditionally, evolutionary robotics is concerned with the design of robot controllers, using evolutionary algorithms, which takes the phylogeny into account. Complementary to evolutionary robotics, where the role of robot morphology is largely neglected in designing intelligent behaviors, morphological robotics was targeted for connecting brain, body, and environment in robot design. Unfortunately, it appeared that morphological computation advocates to generate intelligent behaviors with the help of the robot morphology using a simple controller and has not paid sufficient attention to the developmental aspects of morphology.

A brief introduction to biological morphogenesis and its computational models are presented in Section II. A metaphor between swarm robotic systems and multicellular systems is described in Section III, where a gene regulatory model is used for self-organizing multiple robots to form complex shapes. Related issues such as how to represent and form complex shapes without a global coordinate system are also discussed. Section IV presents our idea of using a gene regulatory network model for self-reconfigurable modular robots, followed by Section V, where the developmental approach to evolutionary codesign of the body and controller of robots or robot parts (e.g., a robot arm/hand for object grasping) is discussed. Concluding remarks of this paper are provided in Section VI.

II. MULTICELLULAR MORPHOGENESIS AND ITS COMPUTATIONAL MODELING

A. Biological Morphogenesis and Metamorphosis

Morphogenesis of animals can be divided into early embryonic development and later embryonic development [27]. Early embryonic development typically involves cleavage, gastrulation, and axis formation, while later embryonic development is mainly responsible for the development of the nervous systems, starting with the segregation of neural and glial cells from the ectoderm germ layer [80]. An example of morphogenesis of nematostella vectensis is illustrated in Fig. 2.

Metamorphosis is another interesting stage of biological development. There are two types of metamorphosis, namely, incomplete and complete metamorphosis. For organisms underlying incomplete metamorphosis, there are three developmental stages, in which nymphs look similar to adults. In contrast, organisms that undergo complete metamorphosis have four developmental stages, in which the shape of the organisms changes drastically. Fig. 3 illustrates incomplete and complete metamorphosis of insects.
Both multicellular morphogenesis and metamorphosis are under the control of gene regulatory networks. When the DNA is expressed, information stored in the genome is transcribed into mRNA and then translated into proteins. Some of these proteins are transcription factors (TFs) that can regulate the expression of their own or other genes, thus resulting in a complex network of interacting genes termed as a gene regulatory network (GRN). New findings in the recent years suggest that some previously so-called noncoding genes are transcribed into small RNAs that can downregulate or fully switch off the expression of some genes through transcriptional or posttranslational interferences.

B. Computational Modeling of Developmental Gene Networks

To understand the emergent morphology resulting from the interactions of genes in a GRN, reconstruction of gene regulatory pathways using a computational model has become popular in systems biology [11]. A large number of computational models for GRNs have been suggested [15], [20], which can largely be divided into discrete models, such as random Boolean networks and Markovian models, and continuous models, such as ordinary differential equations and partial differential equations. Sometimes, GRN models also distinguish themselves as deterministic models and stochastic models according to their ability to describe stochasticity in gene expression. Note that in artificial life, a few high-level abstraction models have also been used for modeling development, such as the L-systems [55] and grammar trees [30].

Generally speaking, the regulatory dynamics in a unicellular cell can be described by a set of ordinary differential equations. For example, the mathematical model of gene expression with autoregulation can be described by

$$\frac{d[R]}{dt} = -\gamma_R [R] + \alpha_R H([P])$$

(1)

$$\frac{d[P]}{dt} = -\gamma_P [P] + \alpha_P [R]$$

(2)

where $[R]$ and $[P]$ are the concentration of mRNA and protein, respectively, γ_R and γ_P are the decay rate of the mRNA and protein, α_R and α_P are the synthesis rate of the mRNA and protein, and $H(X)$ is the Hill function. If the autoregulation is a repression, also known as negative autoregulation, the Hill function can be described by

$$H_r(x) = \frac{\beta}{\theta^n + x^n}$$

(3)

and if the autoregulation is activation, the Hill function can be written as

$$H_a(x) = \frac{\beta x^n}{\theta^n + x^n}$$

(4)

where β is the activation coefficient, θ is the threshold, and n is the Hill coefficient.

For describing the morphogenesis of multicellular organisms, the interaction between the cells and its influence on gene expression dynamics must be taken into account. Mjolsness et al. [66] has suggested a generalized GRN model that considered diffusion of TFs among the cells:

$$\frac{dg_{ij}}{dt} = -\gamma_j g_{ij} + \phi \left[\sum_{l=1}^{n_j} W^{jl} g_{il} + \theta_j \right] + D_j \nabla^2 g_{ij}$$

(5)

where g_{ij} denotes the concentration of jth gene product (protein) in the ith cell. The first term on the right-hand side of (5) represents the degradation of the protein at a rate of γ_j, the second term specifies the production of protein g_{ij}, and the last term describes protein diffusion at a rate of D_j. ϕ is an activation function for the protein production, which is usually defined as a sigmoid function $\phi(z) = 1/(1 + \exp(-\mu z))$. The interaction between the genes is described with an interaction matrix W^{jl}, the element of which can be either active (a positive value) or repressive (a negative value). θ_j is a threshold for activation of gene expression. n_j is the number of proteins. An illustration of cell–cell interactions is provided in Fig. 5, where gene 1 of cell 1 is activated by its own protein and repressed by the protein produced by gene 1 of cell 2 through diffusion. Similarly, gene
C. Applications of Computational Models of GRN

In addition to reconstruction of gene regulatory pathways based on biological data [85], computational models have widely been used for analyzing the dynamics of GRNs, particularly regarding robustness of GRN motifs, synthesizing in silico typical regulatory dynamics such as bistability and sustained oscillation, and designing engineered systems [16], including morphogenetic robotics that will be discussed in greater detail in the following sections.

1) Analysis of GRN Motifs: It is believed that GRNs can be analyzed by examining the structure and function of a number of wiring patterns, known as network motifs, such as autoregulation, feedforward loops, and feedback loops [1]. Recently, the role of feedback loops, in particular, the coupling of feedback loops and its relationship to the robustness of resulting dynamics of the network motifs has received increasing attention [14], [51], [94].

The cis-regulation logic also plays an important role in the dynamics and functionality of GRNs. A systematic investigation of control logic in gene regulation has been reported in Schilstra and Nehaniv [81], which suggested that networks consisting of competitively binding activators and repressors can be controlled more robustly.

2) In Silico Synthesis: In silico synthesis of typical regulatory dynamics can offer us insights into how nature has shaped the evolution of regulatory motifs [25], [72]. In Knabe et al. [46], a GRN was used for evolving biological clocks in the presence of periodic environmental stimuli, where both the number and activation type (activating or repressive) of regulatory units of each gene were subject to evolution. They reported that the evolved clock tends to be robust to perturbations that evolution has experienced. Jin et al. [41] investigated the influence of the genetic encoding scheme as well as the activation function used in the gene regulatory model of a relaxation oscillation circuit. Their results suggested that evolving sustained oscillation using a step function as the activation function is much easier than using a Hill function. Most recently, it has been found that robust motifs can emerge from in silico evolution without an explicit selection pressure [40]. In [40], it has been found that there is an inherent tradeoff between innovation and robustness in a feedforward Boolean model of genotype–phenotype mapping [38], which, interestingly can be resolved in a dynamic gene regulation model [42].

3) Artificial Embryogeny: A large body of research has been reported on simulating biological development in computational environments [89]. Motivations of building models for artificial embryogeny include understanding biological development in artificial life [89], designing complex structures [91], and amorphous computing [8], to name a few. Obviously, all the three areas of morphogenetic robotics involve in computational models of biological morphogenesis, which will be elaborated in the following sections.

III. MORPHOGENETIC SWARM ROBOTIC SYSTEMS

A. Swarm Robotic Systems

A swarm robotic system is a multirobot system consisting of a large number of homogeneous simple robots. Swarm robots are often used to fulfill tasks that are difficult or even impossible for a single robot, especially in the presence of uncertainties, or with incomplete information, or where a distributed control or asynchronous computation is required. Compared with centralized systems, swarm robotic systems with a distributed control are believed to be flexible, robust, and adaptive for tasks that are inherently distributed in space and/or time. Typical applications of swarm robotic systems include group transport, foraging, shape formation, boundary coverage, urban search and rescue, and unknown environment exploration. However, designing a decentralized control algorithm for swarm robotic systems has been a challenging task [12], [60].

B. Metaphor Between Swarm Robotic Systems and Multicellular Systems

1) Cell-Robot Mapping: The basic idea in applying genetic and cellular mechanisms in biological morphogenesis to self-organized control of swarm robots is to establish a metaphor between a cell and a robot. In other words, it is assumed that the movement dynamics of each robot can be modeled by the regulatory dynamics of a cell. In [32], [39], [61], the location and velocity of the robots are described by the protein concentration of a few genes whose expression is influenced by each other. Typically, for a robot in a 3-D space, three proteins are used for denoting the robot’s position and three for the velocity. Note, however, that the mathematical definition of the protein concentrations standing for position and velocity of the robots do not satisfy the exact physical relationship between position and velocity. Fig. 6 shows multiple robots in a field, each represented by a cell, where the robots are represented by cells containing a virtual DNA in a field.

Keeping the metaphor between the cells and the robots in mind, the movement dynamics of each robot can be described by a GRN model, where the concentration of two proteins of type G represents the x and y position of a robot, respectively,
and that of the proteins of type P representing the analog of the velocity.

$$\frac{dg_{i,x}}{dt} = -az_{i,x} + mp_{i,x}$$

$$\frac{dg_{i,y}}{dt} = -az_{i,y} + mp_{i,y}$$

$$\frac{dp_{i,x}}{dt} = -cp_{i,x} + kf(z_{i,x}) + bD_{i,x}$$

$$\frac{dp_{i,y}}{dt} = -cp_{i,y} + kf(z_{i,y}) + bD_{i,y}$$

where $i = 1, 2, ..., n$, and n is the total number of robots (cells) in the system. $g_{i,x}$ and $g_{i,y}$ are the x and y position of the ith robot, respectively, which corresponds to the concentration of two proteins of type G. $p_{i,x}$ and $p_{i,y}$ are the concentration of two proteins of type P, which denotes the velocity-like property of the ith robot along the x and y coordinates, respectively. $D_{i,x}$ and $D_{i,y}$ are the sum of the distances between the ith robot and its neighbors. In the language of the multicellular system, it is the sum of the concentration of protein type G diffused from neighboring cells. Mathematically, we have

$$D_{i,x} = \sum_{j=1}^{N_i} D^j_{i,x} \quad D_{i,y} = \sum_{j=1}^{N_i} D^j_{i,y}$$

where N_i denotes the number of neighbors of robot i, and $D^j_{i,x}$ and $D^j_{i,y}$ are the protein concentrations diffused from neighboring robot j received by robot i, which is defined as

$$D^j_{i,x} = \frac{(g_{i,x} - g_{j,x})}{\sqrt{(g_{i,x} - g_{j,x})^2 + (g_{i,y} - g_{j,y})^2}}$$

$$D^j_{i,y} = \frac{(g_{i,y} - g_{j,y})}{\sqrt{(g_{i,x} - g_{j,x})^2 + (g_{i,y} - g_{j,y})^2}}$$

The diffusion term in the regulatory model simulates the cell–cell signaling in multicellular systems. For a swarm robotic system, this entails that each robot is able to detect the distance to its neighboring robots, which is practical and easy to realize.

2) Morphogen Gradients for Target Shape Representation:
In biological morphogenesis, morphogen concentration gradients control cell fate specification and play a key role in understanding pattern formation [5]. In the present gene regulatory model for shape formation of swarm robots, the target shape information is also provided in terms of morphogen gradients, which is defined by $f(z_i)$ in (7). For 2-D target shape, $f(z_i)$ can be defined as follows:

$$f(z_{i,x}) = \frac{1 - e^{-z_{i,x}}}{1 + e^{-z_{i,x}}}$$

$$f(z_{i,y}) = \frac{1 - e^{-z_{i,y}}}{1 + e^{-z_{i,y}}}$$

where $z_{i,x}$ and $z_{i,y}$ are the gradients along x-axis and y-axis, respectively, of an analytic function h, which is described as

$$z_{i,x} = \frac{\partial h}{\partial g_{i,x}} \quad z_{i,y} = \frac{\partial h}{\partial g_{i,y}}$$

where h defines the shape the robots should form.

The aforementioned GRN makes it possible for the swarm robots to form shapes that can be described by an analytical function. There are potentially three problems with this way of shape representation. First, the complexity of the shapes is limited. Second, the system needs a global coordinate system for describing the shapes, which poses a big problem for decentralized systems. Third, the shape can be formed only on a predefined location. To address these issues, parametrized shape representation models, such as Bézier, B-Spline, and nonuniform rational B-Spline (NURBS) can be used.

The NURBS [75] is a mathematical model commonly used in computer graphics and design optimization for generating and representing curves and surfaces. NURBS can offer two unique features for multirobot shape formation. First, it provides a common mathematical form for both standard analytical shapes and free-form shapes. Second, it is a parametrized representation that is independent of an absolute coordinate system. Once the parameter in the NURBS curve is fixed, a corresponding point on the NURBS curve can be determined without a global coordinate system. The basis functions used in NURBS curves are defined as $B_{i,q}(u)$, where i corresponds to the ith control point, and q is the degree of the basis function. A NURBS curve can be defined as the combination of a set of piecewise rational basis functions with $N + 1$ control points p_j and the associated weights w_j as follows:

$$c(u) = \frac{\sum_{j=1}^{N} w_j B_{j,q}(u)}{\sum_{j=1}^{N} w_j B_{j,q}(u)}$$

where N is the number of control points, u is the parametric variable, and $B_{i,q}(u)$ are B-spline basis functions.

With the NURBS model for shape description, complex shapes can be formed, refer to Section III-C for examples.
C. Illustrative Results on GRN-Based Swarm Robot Self-Organization

In the experiments, the parameters in (6) and (7) need to be determined. A straightforward way is to define the parameters heuristically with the following condition being satisfied so that the states of the dynamic system can converge to the target shape:

\[mk \leq ac, a, c, k, m > 0. \] (14)

The proof of the convergence is provided in [32]. In addition, \(b \) should also be larger than zero so that collisions between the robots, possibly between a robot and an obstacle, can be avoided.

A more desired approach to setting up these parameters is to find a set of optimal parameters, using an evolutionary algorithm by minimizing the time and/or the total travel distance for all robots to converge to the target shape, as done in [32].

If NURBS is used for representing the target shape, parameter \(\nu \) in (13) should be determined for each robot. During the self-organization process, each robot will randomly pick a value from \(\{0, 1/n, 2/n, \ldots, 1\} \), where \(n \) is the number of robots in the system, which is either assumed to be known, or can be estimated as described in [31]. It is therefore possible that different robots pick the same \(\nu \) value in the beginning and thus will compete the same point on the target shape. In this case, robots arrive later will try another \(\nu \) value until it converges to a point on the target shape where no other robot exists.

Simulation results where 17 robots are used to form a bird-flocking shape are given in Fig. 7. The robots are randomly distributed in the area in the beginning. A reference robot is chosen through a competition process, during which the robot that has the maximum number of neighbors wins. Driven by the GRN-based dynamics, the robots will then autonomously form the target shape. Snapshots showing 20 robots covering a boundary simulating that of the Brooklyn Borough of New York City [31] are provided in Fig. 8. A proof-of-concept experiment has also been performed using E-Puck robots. Fig. 9 shows a few snapshots of 8 E-Puck robots converging to a capital letter “R,” refer to [61] for details.

One important concern in designing decentralized algorithms for self-organizing swarm robots is their robustness in the presence of disturbances in the system as well as in the environment. Extensive empirical results show that the morphogenetic self-organization algorithm is robust to changes in the number of robots, insensitive to noise in the model parameters sensory measurements, and adaptable to environmental changes such as moving obstacles [39].

D. Intermediate Summary

Compared to existing approaches [36], the morphogenetic approach to swarm robotic systems has the following advantages. First, the global behavior, i.e., the target shape in the context of pattern formation, can be embedded in the robot dynamics in the form of morphogen gradients. In pattern formation, the global shape can be described using parametrized models such as a NURBS model that can represent both analytical and free-form shapes. The GRN model can then generate implicit local interaction rules automatically to generate the global behavior, which can be guaranteed through a rigorous mathematical proof. Second, the morphogenetic approach is robust to perturbations in the system and in the environment. Third, it has also shown that the morphogenetic approach can provide a unified framework for multirobot shape formation and boundary coverage [31], since the representation of the target shape is independent of a specific global coordination system. Morphogenetic approaches to self-organization of collective systems can potentially be applied to solving other engineering problems such as the topology self-reconfiguration of communication networks [54].

IV. MORPHOGENETIC MODULAR ROBOTS FOR SELF-ORGANIZED RECONFIGURATION

A. Reconfigurable Modular Robots

Self-reconfigurable modular robots consist of a number of modules and are able to adapt their shape (configuration) by rearranging their modules to changing environments [68]. Each module is a physical or simulated ‘body’ containing a controller. Both physical modular robots, such as M-TRAN [67] and Molecube [69], and simulated ‘animats,’ such as Karl Sims’ virtual
Fig. 10. Examples of physical and simulated modular robots. (a) M-TRAN, (b) Molecube, (c) Karl Sims’ virtual creature, and (d) Framsticks.

Fig. 11. Mechanical demonstration of CrossCube [63]. (a) Joints; (b) Locks on the boundaries of the modules. (c) Rotation and extension of the joints of the modules.

The cross-concaves on each side of the shell restrict the movement trajectory of the joints, as shown in Fig. 11(a). The borders of each module can actively be locked or unlocked with the borders of other modules, as shown in Fig. 11(b). The length and angle of the lock mechanism can also be adjusted on the boards of the modules.

Basic motions of modules in CrossCube include rotation, climbing, and parallel motion. Fig. 11 (c) illustrates a rotation movement of two modules. Parallel motion means that a module moves to a next position, which is parallel to its current position. During a parallel motion, a module moves from its current position to a parallel position on its right. All joints of the modules will stick out slightly to make enough free space for modules to move. Climbing motion means that a module moves to a diagonal neighboring position. Parallel motion and climbing motion allow a module of CrossCube to move to any position within the modular robot as long as the modules are connected.

C. Self-Reconfiguration as Morphogenesis

The connection between reconfigurable modular robots and multicellular organisms appears more straightforward. Each unit in modular robots can be seen as a cell, and there are similarities in control, communication, and physical interactions between cells in multicellular organisms and modules in modular robots. For example, control in both modular robots and multicellular organisms is decentralized. In addition, global behaviors of both modular robots and multicellular organisms emerge through local interactions of the units, which include mechanic, magnetic and electronic mechanisms in modular robots, and chemical diffusion and cellular physical interactions such as adhesion in multicellular organisms. Therefore, it is a natural idea to develop control algorithms for self-reconfigurable modular robots, using biological morphogenetic mechanisms [63], [100]. In the following, we describe briefly a recently proposed morphogenetic approach to designing control algorithms for reconfigurable modular robots.

Similar to morphogenetic swarm robotic systems, each unit of the modular robot contains a chromosome consisting of several genes that can produce different proteins. The proteins can diffuse into neighboring modules, through which local communications between the modules can be established. The concentration of the diffused proteins decays over time. The target configuration of the modular robot is also defined by morphogen
gradients. The space in which the modular robot is seated is divided by a set of grids, each of which will be occupied by one CrossCube module. The morphogen gradient can be either positive or negative. A positive morphogen gradient means that the grid should be occupied by a module, while a negative gradient suggests that the module in the grid, if any, should be removed. A higher value of morphogen gradient indicates a higher priority for the grid to be filled by a module.

Different from the morphogenetic swarm robotic system described in Section III, in which the target shape is fully defined by a kind of maternal morphogen, each unit in the morphogenetic modular robot system can modify the morphogen gradients by secreting either positive or negative morphogen gradients, which is indispensable for adapting its configuration to the current environment or task. As a result, each module is able to attract or repel neighboring modules.

The attraction and repellent behaviors of the modules are regulated by a GRN-based controller, which can adaptively set the state of the modules to one of the following five states, namely, stable, unstable, attracting, repellent, and repelled. The transition relationships between the five states of modules are given in Fig. 12. Refer to [63] for details of state transitions.

1) GRN-Based Pattern Transition: The state transitions are controlled by a GRN model having two gene–protein pairs, an attracting gene–protein pair \((G_A - P_A)\) and a repellent gene–protein pair \((G_P - P_P)\). We assume that the repellent states always have a higher priority than the attracting states. As a result, all the states triggered by attracting behaviors can be overwritten by the states triggered by repellent behaviors. The reason for this is that a grid having a repellent (negative) morphogen gradient should be kept empty as long as migration modules is still in need during reconfiguration.

2) Gene-Protein Pair for Attraction: The attracting gene–protein pair \((G_A - P_A)\) is used to control the transition between attracting, stable, and unstable states, as shown in Fig. 12. At the initial stage of shape configuration, all modules are set as unstable. After they are initialized with the target configuration, modules located in the grids with an attracting morphogen gradient become stable. For a newly stabilized module, the gene expression level of its attracting gene \(G_A\) is initialized to be zero. Meanwhile, this module generates an attracting protein \(P_A\) for each empty neighboring grid that has an attracting morphogen gradient. These grids become attracting to attract unstable modules to occupy them. Here, \(P_A\) is defined as

\[
P^A_i = \{ AP^i, S^i, C^A_i \} \tag{15}
\]

where \(P^A_i\) is the attracting protein generated by the \(i\)th module for its \(j\)th neighbor. \(AP^i\) is the \(j\)th neighboring attracting grid of the \(i\)th module, \(S^i\) is the identification label of the \(i\)th module, and \(C^A_i\) is the concentration of the protein \(P^A_i\), which equals to the morphogen gradient of \(AP^i\). \(P_A\) can regulate \(G_A\) in the same cell and can also diffuse into neighboring modules to regulate \(G_A\) of neighbors as well.

The dynamics of \(G_A\) and \(P_A\) can be described by the following GRN model:

\[
\frac{dg_A(t)}{dt} = -ag_A(t) + b \sum p_{A,\text{local}} - c \sum p_{A,\text{rec}} \tag{16}
\]

where \(g_A(t)\) is the gene expression level of \(G_A\) at time \(t\). \(p_{A,\text{local}}\) and \(p_{A,\text{rec}}\) are protein concentrations of locally generated protein and received protein from other modules, respectively. \(a, b,\) and \(c\) are constant coefficients, which can be determined, e.g., using an evolutionary algorithm.

Based on the expression level of \(g_A\), the state of the module can be regulated according to the following rules:

\[
\text{state} = \begin{cases}
\text{unstable when } g_A < G_{A,L} \\
\text{stable when } G_{A,L} < g_A < G_{A,U} \\
\text{attracting when } g_A > G_{A,U}
\end{cases} \tag{17}
\]

where \(G_{A,L}\) is a negative threshold and \(G_{A,U}\) is a positive threshold. According to (16), \(g_A\) falls below a negative threshold \(G_{A,L}\) with the increase of \(c \sum p_{A,\text{rec}}\). A higher value of \(c \sum p_{A,\text{rec}}\) means that there are some more important grids to be filled in. So the module needs to change its state from stable to unstable and move to a more important position, following the attracting morphogen gradient. An unstable module chooses a \(P_A\) with the highest concentration value from all the received attracting proteins. Then the module migrates to the attracting position requested by that \(P_A\). In order to guide the unstable modules to migrate to their destination, each module can detect the proteins within its local environment and choose the position with the highest protein concentration as its destination. Once they reach their destination, the unstable modules become stable.

The expression level of \(g_A\) will be enhanced when \(b \sum p_{A,\text{local}}\) increases, which means that the module has some important neighboring positions to fill. So the module changes its current state to the attracting state. The attracting modules emit attracting proteins in the grid in which they sit, and the emitted proteins will then diffuse into other modules. The attracting module will become stable again once its neighboring attracting positions are all occupied.

In summary, the gene–protein pair \((G_A - P_A)\) can regulate each other by the GRN-based model described in (16) and (17). More specifically, \(P_A\) can regulate \(G_A\) through (16), while \(G_A\)
can determine when P_A is allowed to diffuse into neighboring grids based on (17). That is to say, only if the expression level of G_A is between $G_{A,L}$ and $G_{A,H}$, P_A can be generated; and only if the expression level of G_A is above $G_{A,H}$, P_A is allowed to diffuse.

3) Gene-Protein Pair for Repelling: The repellent states are controlled by the repellent gene–protein pair $(G_P - P_P)$. The repellent modules produce P_P, which is defined as

$$P_P^{ij} = \{RP^{ij}, S^i, C^j_P\} \quad (18)$$

where P_P^{ij} is the repellent protein generated by the ith module for its jth neighbor. RP^{ij} is the jth repellent grid position around the ith module. S^i is the identification label of repellent module i, and C^j_P is the concentration of the protein P_P^{ij}, which equals to a predefined positive constant. As we mentioned earlier, when a stable module finds out that some of its neighbors are located in a position with repellent morphogen gradient, it changes its state to ‘repellent’ and switches the state of its neighbors to ‘repelled.’ If the repellent module is triggered under this situation, RP^{ij} is reset such that P_P can only repel the specific neighboring module that is located in RP^{ij}. If the repellent module is triggered by a deadlock, RP^{ij} is not reset because P_P should be detected by all the neighboring modules of the repellent module.

The gene expression level of g_P is initialized to be the morphogen gradient of the current grid position of the module. It can be regulated by P_P through the following equation:

$$\frac{dg_P(t)}{dt} = dg_P(t) - e \sum_{P_P, j} p_{P_P, j} \quad (19)$$

where $g_P(t)$ is the gene expression level of the repellent gene G_P at time t, $p_{P_P, j}$ is the concentration of the received repellent protein, $G_{P,L}$ is a negative constant threshold and d and e are constant coefficients.

When a module receives P_P, the concentration of g_P will be reduced. If $g_P < G_{P,L}$, the module changes its state to ‘repelled.’ Obviously, modules with a lower morphogen gradient are more easily to be repelled.

To summarize, P_P can regulate G_P through (19). G_P can produce P_P under the condition that G_P is below $G_{P,L}$ and the module is blocked.

4) Lookup Table-Based Configuration Representation: Adaptation to environmental changes is of paramount importance in reconfigurable modular robots. Similar to analytical or parametrized representation of the target shape in morphogenetic swarm robots, a mechanism is needed to define and modify the target configuration of the modular robot. Adaptation of the global configuration of the modular robot, i.e., change in morphogen gradients, can be triggered by local sensory feedback. Once a module receives such sensory feedback, this information will be passed on to its neighbors through local communication. In this way, a global change in configuration can be achieved.

For the sake of simplicity, a number of basic configurations for different environments can be predefined in terms of a lookup table for a given mission, for instance locomotion. For such tasks, it is also assumed that each module is equipped with a sensor to detect the distance between the module and obstacles in the environment. An example of defining the configuration of a vehicle is provided in Table I. In the table, x, y, and z are 3-D coordinates of grid positions, ML denotes morphogen level and PID stands for position identification. Additionally, we define some joints’ behaviors to enable the vehicle to move, once the configuration is completed. Joints can be identified by its PID and RD means joint rotate direction.

<table>
<thead>
<tr>
<th>Positions (x, y, z, ML, PID)</th>
<th>Joints (PID1, PID2, RD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0, 0, 10, 0)</td>
<td>(1, 0, 3, 10, 10)</td>
</tr>
<tr>
<td>(1, 0, 0, 10, 1)</td>
<td>(2, 0, 3, 10, 11)</td>
</tr>
<tr>
<td>(2, 0, 0, 10, 2)</td>
<td>(0, 0, 4, 10, 12)</td>
</tr>
<tr>
<td>(0, 1, 0, 10, 3)</td>
<td>(1, 0, 4, 10, 13)</td>
</tr>
<tr>
<td>(2, 0, 1, 10, 4)</td>
<td>(2, 0, 4, 10, 14)</td>
</tr>
<tr>
<td>(0, 1, 2, 10, 6)</td>
<td>(0, 0, 1, -1, 16)</td>
</tr>
<tr>
<td>(0, 2, 2, 10, 7)</td>
<td>(0, 0, 1, 1, -17)</td>
</tr>
<tr>
<td>(2, 2, 2, 10, 8)</td>
<td>(0, 0, 3, 1, -18)</td>
</tr>
<tr>
<td>(3, 2, 2, 10, 9)</td>
<td>(3, 0, 3, 1, -19)</td>
</tr>
</tbody>
</table>

D. Illustrative Examples of GRN-Based Self-Reconfiguration

This section describes briefly a case study on using GRN-based controller to coordinate CrossCube modules for a locomotion task, in which the modular robot needs to traverse through different environmental fields. A software is developed to simulate the behaviors and interaction of CrossCube in a physical world using C++ and the Physx engine from nVidia. In the following experiment, the parameters of the GRN models are setup as follows: $a = 0.7, b = 1, c = 1, G_{A,L} = -1, G_{A,H} = 1, G_{P,L} = 2$, and $C^i_P = 0.7$. The concentration of each protein decays to 80% of its previous level when it diffuses into a new grid.

Before showing the self-reconfiguration ability of the system in a changing environment, we first perform a simple experiment to verify the effectiveness of the model. The modular robot has a “block” configuration consisting of 16 modules, which should convert into a vehicle-like pattern defined in terms of morphogen level, as shown in Table I. A set of snapshots is provided in Fig. 13 to show a few intermediate configurations toward the vehicle configuration realized by the GRN-based model.

To verify the model’s ability to reconfigure the modular robot to adapt to different environments, a simulation has been performed where a vehicle needs first to move through a narrow passage. Then, the robot must climb up a step to move forward. The environment is defined using the size of the modular robots as a unit: the wider passage is seven units in width, while the narrower passage is of 5.5 unit in width. The height of the step is one unit. The reconfiguration is triggered when any of the modules in the front detect obstacles. If all front modules detect obstacles, a climbing reconfiguration process will be activated. A number of snapshots showing the reconfiguration processes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
V. Morphogenetic Brain and Body Design for Intelligent Robots

A. Why Development?

The role of neural and morphological development in designing intelligent robots has largely been neglected in evolutionary robotics [56], although coevolution of brain and body has long been recognized both in robotics [76] and artificial life [92]. This situation has not been changed a lot to date due to various difficulties in coevolving the development of body and brain. First, there are a lack of knowledge about the developmental mechanisms in biology and a lack of physically realistic environment [74]. Second, the influence of artificial development on the systems performance is not well understood. Although it is believed that the developmental mechanism offers the possibility to evolve complex systems, the performance advantage of such developmental systems over nondevelopmental ones remains unclear. Finally, necessary hardware, which is of particular importance in robotics, such as growing materials, adaptable structures, adaptable sensors, and actuators are still lacking.

Nevertheless, the role of development in brain–body coevolution cannot be overestimated, simply because in natural evolution, development is an indispensable phase in which organisms have to interact with the environment constantly and find a way to survive. It has been found that development can bias the evolutionary path considerably, as illustrated in Fig. 15. In addition, it has been surmised that development can also open up new opportunities for evolution [4], [78], which has partly been verified in computational developmental systems [42].

B. Computational Models for Neural and Morphological Development

Various computational models have been suggested for neural and morphological development [34], [89]. A large body of research on modeling the growth of nervous systems was based on grammatical re-writing rules such as L-systems [10], [13], [44] and grammar trees [30], [48]. In [17], Kauffman’s Boolean network was used for modeling the structural development of dynamic neural networks. More low-level models that consider cell–cell chemical interactions through reaction and diffusion of morphogens have also been employed for modeling neurogenesis [18], [23], [45], [65], [70]. A recurrent artificial neural network was used for modeling the development of a spiking neural network for the control of a Khepera robot [22]. In [24], the matrix rewriting scheme suggested in [44] was applied to modeling neural morphogenesis, which was coevolved while the other layer organizes the modules autonomously to achieve the desired configuration. Such a hierarchical structure makes it possible to separate the control mechanisms for defining a target configuration from those for realizing it, similar to biological gene regulatory networks [21]. In response to the environment changes, the layer for defining the robot configuration is able to adapt the target configuration, based on which the second layer can reorganize the modules autonomously to realize the target configuration.

E. Intermediate Summary

The GRN model described earlier represents a hierarchical approach to self-reconfiguration of modular robots, where one layer defines the desired configuration of the modular robots are given in Fig. 14. More details of the GRN-based modular robot system can be found in [63].
with neural plasticity rules for controlling a mobile robot. A low-level GRN model with chemical diffusion was adopted for evolving neurogenesis for a hydra-like animats [41]. The weights of the developed spiking neural networks were then further adapted using an evolution strategy for generating food-catching behavior.

Similar computational models have also been suggested for simulating morphological development. The main differences may lie in the following aspects compared to those for neural development. First, increasing attention has been paid to 3-D models [19], [33], [90], [98], which plays an important role in modeling morphological development. Second, physical cellular interactions are also modeled in addition to the genetic regulatory mechanisms, such as adhesion repulsion between the cells. Both sphere models [91] and spring-mass-damper models [82] have been used.

Finally, efforts have also been made to simulate both neural and morphological development, using the same developmental model, though most of them use a high-level developmental model, such as the L-system [49], [87]. A Boolean genetic regulatory network has been used for modeling both morphological parts such as sensor and actuator, and control part such as control-neurons at a very high abstraction level [2].

So far, most neural networks generated by a developmental model have very limited functionalities. In addition, most developmental models of neural networks take only genetic mechanisms, i.e., activity-independent development, into account. For the neural network to function, activity-dependent development, which is responsible for synapse refinement, is essential. The main processes in neural development is summarized in Fig. 16. From the figure, we can see that early development of nervous systems, such as neuron axon growth, dendrite outgrowth, and synapse maturation, which was usually thought to be genetically regulated, are also considerably driven by neural activity [83], [88], [93].

C. GRN Model for Neural and Morphological Development

The growth of the animat morphology is under the control of GRNs and cellular physical interactions. Extended from the cellular growth model for structural design, GRN models for the development of a nervous system [41] and body plan [82] of primitive animals have been proposed. In the genome of the GRN models, each gene consists of a number of structural units (SUs) proceeded by a number of regulatory units (RUs). RUs can be activating \((RU^+)\) or repressive \((RU^-)\). When SUs are activated, they will produce proteins either responsible for cellular behaviors such as cell division, cell death, cell migration, and axon growth, or proteins regulating the activation of the structural units, which are also known as TFs. If a TF can only regulate the genes inside the cell, it is then called an internal TF. If a TF can also diffuse out of the cell and regulate the genes of other cells, it is termed as an external TF. A TF can be both intracellular and intercellular. An example of a chromosome for neural development is provided in Fig. 17. From the figure, we note that single or multiple RUs may regulate the expression of a single or multiple SUs.

Whether a TF can influence an RU is dependent on the degree of match between the affinity value of a TF and that of an RU. If the difference between the affinity values of a TF and a RU is smaller than a predefined threshold \(\epsilon\), the TF can bind to the RU.
to regulate. The affinity match \(\gamma_{i,j} \) between the \(i \)th TF and \(j \)th RU is defined by
\[
\gamma_{i,j} = \max \left(\epsilon - |\alpha_{i}^{TF} - \alpha_{j}^{RU}|, 0 \right) .
\] (20)

If \(\gamma_{i,j} \) is greater than zero and the concentration \(c_{i} \) of the \(i \)th TF is above a threshold \((\theta_{j}) \) defined in the \(j \)th RU, then the \(i \)th TF influences the \(j \)th RU.

Thus, the activation level contributed by this RU (denoted by \(a_{j} = \sum_{i=1}^{M} |c_{i} - \theta_{j}| \)) is also encoded in the corresponding gene. The expression level of the \(k \)th gene, that is regulated by \(N \) RUs, can be defined by
\[
\alpha_{k} = 100 \sum_{j=1}^{N} h_{j} a_{j}(2s_{j} - 1)
\] (21)

where \(s_{j} \in (0, 1) \) denotes the sign (positive for activating and negative for repressive) of the \(j \)th RU and \(h_{j} \) is a parameter, representing the strength of the \(j \)th RU. If \(\alpha_{k} > 0 \), then the \(k \)th gene is activated and its corresponding behaviors encoded in the SUs are performed.

A SU that produces a TF encodes all parameters related to the TF, such as the affinity value, a decay rate \(D_{i}^{t} \), a diffusion rate \(D_{i}^{f} \), as well as the amount of the TF to be produced:
\[
A = \beta \frac{2}{1 + e^{-20/f - \alpha}} - 1
\] (22)

where \(f \) and \(\beta \) are both encoded in the SUTF.

A TF produced by a SU can be partly internal and partly external. To determine how much of a produced TF is external, a percentage \((p_{\text{ex}} \in (0, 1)) \) is also encoded in the corresponding gene. Thus, \(p_{\text{ex}} A \) is the amount of external TF and \((1 - p_{\text{ex}}) A \) is that of the internal TF.

To make it easier for simulating the diffusion of TFs, cells are put in an environment that is divided into a number of grids. External TFs are put on four grid points around the center of the cell, which undergoes first a diffusion (23) and then decay process (Eqn. 24):
\[
\begin{align*}
\mathbf{u}_{i}(t) &= \mathbf{u}_{i}(t - 1) + 0.1 D_{i}^{f} (\mathbf{G} \cdot \mathbf{u}_{i}(t - 1)) \quad (23) \\
\mathbf{u}_{i}(t) &= \min \left(\left(1 - 0.1 D_{i}^{f}\right) \mathbf{u}_{i}(t), 1 \right) \quad (24)
\end{align*}
\]

where \(\mathbf{u}_{i} \) is a vector of the concentrations of the \(i \)th TF at all grid points and the matrix \(\mathbf{G} \) defines, which grid points are adjoining.

The SUs encode cellular behaviors and the related parameters. The SU for cell division encodes the angle of division, indicating where the daughter cell is placed. A cell with an activated SU for cell death will die at the end of the developmental time step.

The aforementioned cellular model has been applied to simulate both morphological and neural development [41], [82]. In the experiment to generate an animat like \(C. elegans \), two prediffused, external TFs without decay and diffusion are deployed in the computation area (maternal morphogen gradients). The first TF has a constant gradient in the \(x \)-direction and the second in the \(y \)-direction. In the experiments, the GRN model is initialized randomly, and the target of the evolution is to evolve an elongated animate, whose morphology is defined by a rectangular shape. Without any hard constraints for stopping cell division, we are able to evolve a GRN that results in self-stabilized cellular growth [82]. A few snapshots of the self-stabilized cellular growth process is provided in Fig. 18, where the cellular system starts from two cells sitting in the middle of the simulation area and reaches a dynamic stability at the end of the development.

In the figure, cells in light color are going to divide in the next developmental step, and those in dark are going to die in the next step. In another experiment, we use a similar GRN model for simulating neural growth in hydra. In the beginning, a few simulated stem cells are randomly distributed in the body plan of the hydra-like animat. Then, cells divide, migrate, and axons grow so that the neurons are connected [41]. Snapshots showing this growth process are given in Fig. 19. The evolved GRN resulting in the neural development in Fig. 19 is presented in Fig. 20, which is able to generate the correct temporal activation sequence for cell division, cell migration, and axon growth.

D. Conceptual Framework for Coevolving the Development of Robot Hand Morphology and Controller

It has been found that the morphology of the animal hands has changed a lot to adapt to the needs of the animals during evolution. Fig. 21 (a) shows a few examples of primate hands. From the figure, we can see that they distinguish themselves in both shape and length in the finger segments. Besides, it has been hypothesized that particular behaviors, such as throwing and clubbing, have played a key role in differences between a hand of human beings and that of a chimpanzee [99], refer to Fig. 21 (b).

The importance of coevolving the development of hand morphology and control in robotics is twofold. On the one hand, object grasping and manipulation with a robot hand is itself a challenging task in that such systems are usually highly redundant. Existing work focuses on the design of the hand controller for a given morphology [97], which is inefficient when the shape of the objects changes considerably. A better approach is to codevelop the hand morphology and control in a developmental manner, as illustrated in Fig. 22. In this way, the shape
Fig. 19. Development of a nervous system using the GRN model in [41]. (a) A few stem cells are randomly distributed on a hydra-like body wall. (b)–(d) Cells divide, migrate, and axons grow. As the development goes on more connections are built up.

Fig. 20. Evolved GRN resulting in the neural development in Fig. 19. SU: structural genetic units; RU: regulatory genetic units.

and number of finger segments, the number fingers, and even the number of arms can be evolved together with their controller.

Meanwhile, coevolution of the hand morphology and control in a computational environment provides us a means for understanding the phylogenetic changes in evolution of animal hands. So far, brain–body coevolution in computational environments has led to findings regarding the organizational principles of nervous systems and the emergence of bilateral symmetry in neural configuration [43], [71]. We expect that different hand morphologies will emerge by evolving the system for different behaviors.

VI. CONCLUDING REMARKS

This paper suggests a new field of robotics termed morphogenetic robotics, which focuses on employing genetic and
cellular mechanisms in biological morphogenesis for developing self-organizing, self-reconfigurable, and self-adaptive robotic systems, covering a wide range of robotic systems, such as swarm robotic systems, modular robots, and intelligent robots. Morphogenetic robotics, as epigenetic robotics, is a part of developmental robotics. While epigenetic robotics concentrates on the mental development of robotic systems, morphogenetic robotics focuses on the physical development of the body plan and nervous system of the robots. Therefore, we believe that developmental robotics should include both morphogenetic robotics and epigenetic robotics.

Research on morphogenetic robotics is still in its infancy and therefore many issues remain to be explored. First, many genetic and cellular mechanisms underlying biological morphogenesis still remain elusive, and much work needs to be done on reconstruction of spatiotemporal gene expression patterns using computational models based on biological data. In particular, the self-adaptation capability of the genetic and cellular models to environmental changes used in morphogenetic robotics needs to be improved. The introduction of hierarchical gene regulatory models suggests a promising step toward this goal, but many details on autonomous self-adaptation based on sensory input are still unclear. Second, the interactions between morphogenetic robotics and epigenetic robotics are largely unexplored. Obviously, the physical and mental development are closely coupled, since neural and morphological development lay the neurophysiological foundation for cognitive and mental development, and both are constrained by the environment in which the robots reside. Furthermore, research on developmental robotics should also be performed taking evolution into account, as development can not only bias the direction of evolution, but also enhance evolvability [42]. Finally, morphogenetic robotics is currently very much limited to computational simulations. Appropriate hardware for morphogenetic robotics, including programmable materials [3], [47], and adaptable sensors and actuators, is to be studied.

ACKNOWLEDGMENT

The authors would like to thank H. Guo, Y. Zhang, L. Schramm, T. Steiner, and B. Inden for the illustrative examples used in this paper. The first author (Y. Jin) is grateful to E. Körner and B. Sendhoff for their support.

REFERENCES

